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PART – A 

       (10 x 2 = 20 marks) 
Answer ALL questions.  
 

1. Define upper integral and lower integral of a function f . 
2. Let f  be the function defined on [0,1] by 
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 check whether the function f is Riemann integrable on [0,1]. 
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4. A continuous random variable X has the p.d.f given by 
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 Determine the constant k. 
5. Solve the equation 0)1( 2 =+ yD  
6. Find the order and degree of the differential equation 
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7. Define Beta distribution of second kind. 
8. Find the mean of Gamma distribution with parameter λ . 

9. Find the rank of the matrix 
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10. Define the rank of a matrix. 
 

PART – B 
        (5 x 8 = 40 marks)   

Answer any FIVE questions.   
     

11. For each ,In∈ let nσ be the sub division 
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12. The joint p.d.f of a 2 dimensional random variable (x,y) is given by: 
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 Find the marginal p.d.fs of X and Y. 

13. Express 
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as the sum of a symmetric and a skew symmetric matrix. 

14. Solve the following differential equation xSinxyDD 21)12( 22 ++++− . 
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15. Find the minimum of the function  
xyyxyxf −+= 22 43),(  if 212 =+ yx . 

16. The joint p.d.f of a two dimensional random variable (X,Y) is 
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 Prove that the p.d.f of 22 yxu += is 
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17. Find mean and variance of Beta distribution of 1st kind with parameters ,µ α. 
18. State and prove additive property of Gamma distribution. 

 
PART – C 

    (2 x 20 = 40 marks) 
Answer any TWO questions.  
 

19. a) Find the moment generating function of the random variable, whole moments are 
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b) Evaluate dx
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20. a) If X is a continuous random variable with p.d.f 
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 find M.G.F of X and hence find 1β  and 2β . 
 b) Let X be a continuous random variable with p.d.f 
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21. a) The joint probability distribution of (x,y) is given by 
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 Examine whether X and Y are independent. 
b) Solve the following differential equations 
 (i) xeyDD 32 )96( =+−  

 (ii) xSinyD 3)4( 2 =+  

22. a) Find the characteristic roots of the matrix 
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b) Show that the following system of equations is consistent and solve them.  
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